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A novel approach for analyzing complex gamma-ray spectra using a sequential algorithm is introduced.
The developed Sequential Gamma-ray Spectrum Deconvolution (SGSD) algorithm produces a sequence of
spectra converging to the best estimation of output spectrum of a gamma-ray detector. In each point of
sequence, an isotope of unknown gamma-ray source is identified and the respective response of the
detector to unknown source is reconstructed. Effectiveness of the developed algorithm is demonstrated
by two empirical and simulation studies. In the case of empirical study, a number of recorded gamma-ray
spectra related to a mixed gamma-ray source including different combinations of 5 isotopes (Co-60, Cs-
137, Na-22, Eu-152 and Am-241) are analyzed using whole information of spectra. Furthermore, a num-
ber of simulated gamma-ray spectra related to a mixed gamma-ray source including different combina-
tions of 30 isotopes are analyzed in simulation study. Both man-made and natural radioisotopes like Ba-
133, Co-60, Ir-192, Cs-137, K-40, Th-232 series, U-238 series, Ac-227 series, etc. are used for Monte Carlo
simulations. The numerical results of the SGSD algorithm are compared with those of the conventional
Non-Negative Least Squares (NNLS) algorithm. Based on the results, the identification procedure of the
SGSD algorithm has a remarkable superiority over the NNLS algorithm.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Identification and quantification of isotopes through the analy-
sis of the gamma-ray spectra recorded in a Multi-Channel Analyzer
(MCA) have several applications such as: measuring natural
radioactivity (Caciolli et al., 2012; Baldoncini et al., 2018; Morsy
et al., 2012; Hendrix et al., 2001), elemental analysis using Prompt
Gamma Neutron Activation Analysis (PGNAA) (Meric et al., 2011;
Oliveira et al., 1993), measurements in the marine environment
for radiological purposes (Androulakaki et al., 2016), etc. The
gamma-ray spectra usually consist of several photopeaks rising
over a background, Compton continua and other parts related to
different physical processes (Knoll, 2000; Yang and Garcia, 2018).
Analysis of gamma-ray spectra is usually performed by monitoring
the most intense photopeaks of a background-subtracted spectra.
In the case of high resolution detectors like Ge spectrometers
where the photopeaks are well resolved, the identification and cal-
culation of weight fractions of radioisotopes present in the source
under study are relatively simple tasks (Olmos et al., 1992). Never-
theless, since the analysis is performed in limited energy windows,
only limited spectral information is exploited. Furthermore, the
algorithms that work on the basis of photopeak analysis have dif-
ficulties in the identification of radioisotopes in low counting rates
as well as in the situations where the overlapping of peaks occurs
as a consequence of lack of resolution (Caciolli et al., 2012;
Alamaniotis and Jevremovic, 2015; Gardner et al., 1997). Signifi-
cant improvements in gamma-ray spectrum analysis results can
be obtained by implementing the Whole Spectrum Analysis
(WSA) or Full Spectrum Analysis (FSA) method (Salmon, 1961;
Gardner et al., 1997; Hendrix et al., 2001). The WSA method needs
much less statistical data or acquisition time than photopeak anal-
ysis method to reach the necessary accuracy, since it uses the
whole spectral information (Caciolli et al., 2012). In WSA approach,
the unknown quantity of jth radioisotope (xj) to be retrieved by fit-
ting the measured spectrum (detector response) as a linear combi-
nation of library spectra, the response matrix that contains the
library spectra and couples the count rate in ith channel with the
unique concertation of jth component, Rij, and the recorded count
rate in the ith energy bin, Ni, are related through equation (1)
(Salmon, 1961; Shahabinejad and Vosoughi, 2018).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2019.04.057&domain=pdf
https://doi.org/10.1016/j.anucene.2019.04.057
mailto:shahabinejad@energy.sharif.ir
mailto:nvosoughi@sharif.edu
mailto:nvosoughi@sharif.edu
https://doi.org/10.1016/j.anucene.2019.04.057
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


370 H. Shahabinejad, N. Vosoughi / Annals of Nuclear Energy 132 (2019) 369–380
Ni þ ei ¼
X
j

Rijxj þ Bi ð1Þ

where, Bi is the recorded counts in the in the ith energy bin due to
the background radiation and ei is the statistical uncertainty related
to the counts recorded in ith channel. Eq. (1) can be written in
matrix form as follows:

N þ e ¼ Rxþ B ð2Þ
where, N = (N1,N2,. . .,Nn)T, e = (e1, e2,. . ., en)T, B = (B1,B2,. . .,Bn)T, x = (x1,
x2,. . .,xm)T and R is the n �m response matrix. One encounters the
so-called over-determined problem (Cichocki and Amari, 2002) in
gamma-ray spectroscopy analysis, since the number of channels is
often higher than the number of pertinent libraries (n > m). There-
fore, there is usually no exact solution to this problem.

The WSA approach was first applied for analyzing the gamma-
ray spectra obtained using scintillation detectors in 1961 (Salmon,
1961). Salmon used classical Multiple Linear Regression (MLR)
method to solve the obtained over-determined problem from
WSA approach (Salmon, 1961). Although he achieved appropriate
results in his work, the improper results of the classical MLR
method like generating negative values for abundance fractions
were later reported (Meric et al., 2011; Shahabinejad and
Vosoughi, 2018). This difficulty in estimating the correct amounts
or abundance fractions of radioisotopes occurs due to either the
inverse problem is numerically ill-conditioned (Meric et al.,
2012) or the correct library spectra are not given to the method
(Shahabinejad and Vosoughi, 2018). Several methods have been
proposed to deal with this difficulty like: minimizing the condition
number of the covariance matrix (Meric et al., 2011; Meric et al.,
2012), applying the Non-Negative Least Square (NNLS) method
for FSA of gamma-ray spectra (Baldoncini, 2010; Caciolli et al.,
2012; Baldoncini et al., 2018), performing the FSA in several differ-
ent energy windows (Androulakaki et al., 2016) and controlling the
fitting process on gamma-ray spectra by a ‘‘comparison module”
(Alamaniotis and Jevremovic, 2015; Shahabinejad and Vosoughi,
2018). Artificial Intelligence based techniques like Genetic Algo-
rithms (GAs) (Carlevaro et al., 2008; Alamaniotis et al., 2013),
hybrid fuzzy-genetic (Alamaniotis and Jevremovic, 2015), Fire-
works Algorithm (Alamaniotis et al., 2015; Alamaniotis and
Tsoukalas, 2018) and Particle Swarm Optimization (PSO)
(Shahabinejad and Vosoughi, 2018) have also been used to over-
come the shortcomings of the classical MLR in gamma-ray spec-
trum analysis. These methods (in contrast to the traditional
linear optimization methods) are able to find the global optima
in a large multi-dimensional solution space without suffering the
pitfalls of local optima (Mukherjee, 2002; Shahabinejad and
Sohrabpour, 2017; Shahabinejad et al., 2016). Furthermore, neural
networks have also been applied to analyze gamma-ray spectra as
presented in (Yoshida et al., 2003; Kangas et al., 2008). It is
required to identify the correct library spectra before applying a
fitting process to a gamma-ray spectrum, as the number of perti-
nent libraries is high in many application and all of them do not
contribute in the output spectra. Although Alamaniotis and
Jevremovic (2015) have successfully applied a fuzzy system for
first identifying the pertinent libraries using photopeaks of a mea-
sured spectrum and then fitting on the gamma-ray spectra by
genetic algorithm using the identified isotopes, their fuzzy identi-
fication method may not produce appropriate results when the
number of pertinent libraries increases. As they have reported,
there is a possibility for false detection of radioisotopes using
developed fuzzy system in low statistics and this possibility
increases with increasing the number of pertinent libraries.

In this paper, a novel Sequential Gamma-ray Spectrum Decon-
volution (SGSD) algorithm for analyzing gamma-ray spectra is
introduced. The SGSD algorithm produces a sequence of spectra
converging to the best estimation of spectrum of a gamma-ray
detector. In other words, in each step of the algorithm, an isotope
of unknown gamma-ray source is identified and the respective
response of the detector to unknown source is reconstructed. The
SGSD algorithm exploits the advantages of the active set method
(Gill et al., 1981) and evolutionary optimization techniques
(Shahabinejad and Vosoughi, 2018) to analyze a given gamma-
ray spectrum. This approach is used to identify different isotopes
of a mixed gamma-ray source and determine their corresponding
fractional abundances. Finally, the obtained results of the proposed
method are benchmarked against the conventional NNLS algo-
rithm (Lawson and Hanson, 1995; Caciolli et al., 2012; Baldoncini
et al., 2018).
2. Non-negative least square algorithm

As already mentioned, one encounters an over-determined
problem with no exact solution in gamma-ray spectrum analysis
using WSA approach. To solve such a problem, the least square
solution is the one that minimizes the sum of weighted squares
of residual errors (ei) for all measured detector counts (Ni). Accord-
ing to Eq. (1), the NNLS problem can be written as:

x̂j ¼ argmin
xjP0

Xn
i¼1

wi Ni �
Xm
j¼1

Rijxj � Bi

 !2
0
@

1
A ð3Þ

where,wi is the weight of residual error related to the ith energy bin.
Considering the Poisson distribution for detector counts in each
energy bin, the weights are 1/Ni in gamma-ray spectroscopy
(Phillips, 1978). Since the recorded counts are often zero in some
energy bins of measured spectra, the weights can be considered 1
in many applications. Eq. (3) with weights 1 can be written in
matrix form as presented in Eq. (4).

x̂ ¼ argmin
xP0

jjN � Rx� Bjj22 ð4Þ

Here, the k � k2 is the norm 2 of a vector. The problem (4) is a
constrained non-linear minimization problem. To solve this type
of problem, the NNLS algorithm that is based on the so-called
Karush-Kuhn-Tucker (KKT) conditions and active set method (Gill
et al., 1981) was first implemented by Lawson and Hanson
(Lawson and Hanson, 1995). The KKT conditions are necessary
for optimality of a solution to the constrained non-linear mini-
mization problem and can be expressed by Eq. (5) for the problem
(4).

RT Rxþ B� Nð Þ
� �T

x ¼ 0

RT Rxþ B� Nð Þ P 0
x P 0

ð5Þ

The active set method uses the fact that only a small subset of
constraints are usually satisfied or active at the solution. The jth

constraint is said to be active, if the jth regression coefficient is neg-
ative, otherwise the constraint is called passive. In this method the
active set initially contains all the unknown variables. In each step
of the method, some variables are identified and transferred from
the active set to the passive set so that the sum of the square of
residual errors strictly decreases. The solution to the constrained
least squares problem will then be the solution to the uncon-
strained least square problem using only the variables correspond-
ing to the passive set. The regression coefficients corresponding to
the remaining variables in the active set are set to zero (Bro and
Jong, 1997).

The NNLS algorithm proposed by Lawson and Hanson is
adapted to WSA of gamma-ray spectra and presented in Algorithm
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1. In the algorithm, P is the passive set, A is the active set and holds
the indices of those isotopes (library spectra) that their quantities
are currently fixed at zero (x = 0), RP denotes the matrix containing
only the library spectra currently used in the passive set P and the
intermediate regression vector zP contains their optimum fitting
parameters estimated using least square method. If the set A is
empty or all wj, jeA, are below a certain low tolerance, the isotopes
with positive quantities are identified which their corresponding
indices are in set P and thus the problem is solved (stage 1). If
any wj, j 2 A, is positive, the isotope with the highest wj is included
in the set P (stages 1.2 and 1.3) and the intermediate regression
vector z is calculated on this new set (stage 1.4). When a new iso-
tope is included in the passive set P, there is a chance that in the
unconstrained solution to the new least squares problem (stage
1.4) some of the regression coefficients will turn negative (stage
1.4.1). Calling the new estimate z and the former x, it is possible
to adjust the new estimate to satisfy the constraints. The old esti-
mate is feasible but with a worse fit than the new estimate zwhich,
however, is not feasible. Somewhere along the line segmented x:
= x + a(z-x), 0 � a � 1, there is an interval for which the inequali-
ties are not violated. As the fit is strictly decreasing as a? 1, it is
possible to find that particular value of a which minimizes the fit
and yet retains as many isotopes in the passive set as possible
(stage 1.4.2). For the optimal a, one or several quantity of isotopes
will become zero and hence they are removed from the set P (step
1.4.4). However, the fit of the model will be improved compared
with the prior passive set of isotopes. After adjusting the active
and passive sets, the unconstrained solution using the current pas-
sive set is calculated (stage 1.4.5). The regression coefficients of
isotopes removed from the set P are set to zero (stage 1.4.6). The
stages 1.4.1–1.4.6 are repeated until all violating isotopes are
moved to the set A. If all regression coefficients in z are positive,
the regression vector x is set equal to z (step 1.5) and a new set
of w is calculated (step 1.6). The detailed description of this algo-
rithm can also be seen in (Lawson and Hanson, 1995; Bro and
Jong, 1997). Lawson and Hanson have proven that the true active
set is identified after a finite number of iterations and the solution
can be found by applying the standard least squares algorithm for
the variables corresponding to the passive set. Although this algo-
rithm works well in many applications, it depends on the RTR
which is infeasible for ill-conditioned problems (Meric et al.,
2012; Meric et al., 2012).

Algorithm 1: NNLS

Input: R 2 Rn�m; N 2 Rn; B 2 Rn; tolerance

Output: x̂ P 0 such that x̂ ¼ argminjjN � Rx� Bjj2
Initialization: P =£,

A ¼ 1;2; . . . ;mf g; x ¼ 0; w ¼ RT N� Rx� Bð Þ
Repeat
1. Proceed if A – £ ^ maxj2AðwjÞ > tolerance

� �
1.2. j ¼ argmaxj2AðwjÞ
1.3. Include the index j in P and remove it from A

1.4. zP ¼ ðRPÞTRP
h i�1

ðRPÞTN
1.4.1. Proceed if minðzPÞ 6 0
1.4.2. a ¼ �minj2P xj=ðsj � xjÞ

� �
1.4.3. x :¼ xþ aðz � xÞ
1.4.4. Update A and P

1.4.5. zP ¼ ðRPÞTRP
h i�1

ðRPÞTN
1.4.6. zA ¼ 0

1.5. x ¼ z
1.6. w ¼ RT N� Rx� Bð Þ

2. Comment: The computation is completed
3. Principle of Sequential Gamma-ray Spectrum Deconvolution

algorithm

The SGSD algorithm produces a sequence of spectra converging
to the measured spectrum of a gamma-ray detector. In other
words, an isotope of unknown gamma-ray source is identified
and the respective response of the detector to the unknown source
is reconstructed in each step of the algorithm. The SGSD algorithm
exploits the advantages of the active set method and evolutionary
optimization techniques to analyze the complex gamma-ray spec-
tra. The idea of active and passive sets along with a surplus set is
used for identification purposes, while the same method used in
(Shahabinejad and Vosoughi, 2018) is applied for fitting and con-
trolling the fitting process in the new algorithm. The evolutionary
optimization techniques have an ability to easily put the con-
straints on the desired variables. Moreover, these methods, in con-
trast to the NNLS method, do not deal with the inverse of RTR
matrix, since they try to find an optimal solution in a direct proce-
dure in the search space. However, the dimensions of the search
space increases with increasing the number of library spectra
which, in turn, means an increment in the number of iterations
or running time to reach the stopping criteria. In other words,
these methods suffer from the so called ‘‘curse of dimensionality”
problem (Chen et al., 2015). For example, suppose that we have
given the response matrix of a gamma-ray detector to 700
gamma-ray sources in 1024 energy bins and the response to an
unknown mixed gamma-ray source using the same detector. Also,
assume that the unknown source is likely to contain 30 gamma-ray
isotopes. Without applying an identification method, the iterative
algorithms should update 700 variables using a large dimension
matrix in each iteration. The SGSD algorithm can overcome the
‘‘curse of dimensionality” problem since it uses an identification
procedure in the fitting process. PSO is chosen for fitting process
in the SGSD algorithm, since it has the advantages of simple imple-
mentation, fewer control parameters and better convergence per-
formance among the evolutionary optimization techniques (Gou
et al., 2017; Shahabinejad and Vosoughi, 2018).

3.1. Particle swarm optimization method

PSO (Eberhart and Kennedy, 1995) is a branch of artificial intel-
ligence which imitates the social behaviors observed in nature to
solve various complex mathematical optimizations (Shahabinejad
and Sohrabpour, 2017). Like other evolutionary algorithms, PSO
is also a population-based search algorithm that starts with an ini-
tial population of individuals, called particles, which are dis-
tributed in a random manner over the search space (Eberhart
and Kennedy, 1995). A particle represents a candidate solution
for a multi-dimensional search problem and has a velocity and a
position (solution vector). The set of candidate solutions move
through the search space following typical dynamics in search of
a global optimum for a cost function (or fitness function). PSO
directs the candidate solutions to the global optimum by memoriz-
ing both the best position found by all candidate solutions and the
best positions found by each candidate solutions in the search pro-
cess. For the purpose of gamma-ray spectrum analysis, PSO tries to
find a global optimum to the following single objective optimiza-
tion problem (Shahabinejad and Vosoughi, 2018).

Minimize
x

k N � Nest k2
� 	

where Nest ¼ Rxþ B;
w:r:t: 0 6 xj 6 1

ð6Þ

where, N vector is the normalized recorded counts of NaI(Tl) detec-
tor in all energy bins and Nest is the estimated gamma-ray spectra in
each iteration of the algorithm with the updated x. The detailed
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description of gamma-ray spectrum analysis using PSO method can
be seen in (Shahabinejad and Vosoughi, 2018). In gamma-ray spec-
trum analysis using PSOmethod a ‘‘comparison module” introduced
by Alamaniotis and Jevremovic (2015) have also been applied for
controlling the fitting process. The importance of this module is
due to the correlation between the library spectra which leads to
a possibility of miscalculation of relative abundances. It consists
of two statistical tests (Alamaniotis and Jevremovic, 2015): Signifi-
cance Of Abundance (SOA) and Theil (1967) tests. In SOA test, the
estimated relative abundances are compared to the standard errors
of the estimated values to check whether the estimated abundances
are significantly different than zero as presented below.

IF xj < r xj
� �

xj ¼ 0;
ELSE
xj ¼ xj;

END

where r xj
� �

is the standard error of the estimated value and is com-
puted for isotopes as shown in Eq. (7):

r xj
� � ¼ jjN � Nest jj2ffiffiffiffiffiffiffiffiffiffiffiffiffi

n�m
p � jjRj � Rjjj2

; j ¼ 1; . . . ;m ð7Þ

Here, Rj is the jth column of the response matrix with dimension
of n,m is the number of pertinent libraries and Rj is the mean of the
jth column of the response matrix.

If one or more coefficients are found to be zero after applying
the SOA test, the respective spectra are removed and the second
Fig. 1. Choice of library spectra using algorithm 2. Model 1-J1 is the fittest model betw
models between the Models 2-j and 3-j respectively.
step of the comparison module is activated. In the second step
the Theil coefficient is applied to compare the estimated spectrum
(i.e. not including rejected spectra) and initial spectrum as follow
(Alamaniotis and Jevremovic, 2015; Shahabinejad and Vosoughi,
2018):

Theil ¼ jjN � Nestjj2
jjNjj2 þ jjNestjj2

ð8Þ

The Theil coefficient values in Eq. (8) are limited to the interval
[0 1], where 0 denotes a perfect estimation and 1 denotes a very
poor estimation. The perfect estimation occurs when the estimated
spectrum (Nest) perfectly matches point to point to the measured
spectrum (N), while a very poor estimation occurs when the esti-
mated and the measured spectra do not match at any point. The
Theil coefficient is used to control the rejection process of the
SOA test in such a way that when the value of this coefficient in
current iteration is larger than that of the previous one, the control
process of the ‘‘comparison module” is completed.

3.2. Sequential Gamma-ray spectrum Deconvolution algorithm

As presented in algorithm 2, inputs to the SGSD algorithm are
the detector response matrix (R), spectra related to an unknown
source in the detector (N) and background (B), and a predeter-
mined threshold (d) to check the improvement in Theil coefficient
in the evolution process of the algorithm. In this work, the PSO
method is applied to minimize both mean absolute error (MAE)
and root mean square error (RMSE) (Func in algorithm 2) by solv-
ing the following single objective optimization problem.
een the Models 1-j (P={j}, j = 1,2,..,m) while the Models 2-J2 and 3-J3 are the fittest
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Minimize
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAE

max MAE

� �2 þ RMSE
max RMSE

� �2q� �
where MAE ¼ 1

n k N� Nest k1;
RMSE ¼ 1ffiffi

n
p k N� Nest k2;

Nest ¼ RPxP þ B;
w:r:t: 0 6 xPj 6 1

ð9Þ

where, n is the number of channels or energy bins, k � k2 and k � k1
are L2-norm and L1-norm of a vector respectively, and RP and xP

are the response matrix containing only the library spectra cur-
rently used in the passive set P and corresponding relative abun-
dances respectively. The scaling of MAE and RMSE are performed
using max_MAE and max_RMSE obtained by the comparison of a
library spectrum and the measured (or simulated using Monte Carlo
Table 1
Description of sources and background in experiments.

Source Activity (Bq) Net count rate (#/s)

1) 60Co 30565.18 470.04
2) 137Cs 33110.21 228.01
3) 22Na 3944.50 93.62
4) 152Eu 22655.27 322.99
5) 241Am 34304.69 101.43
Background – 630.55

Table 2
List of 30 radioisotopes used in Monte Carlo simulations. The labels placed on the left sid

Isotope Energy (keV)

3) 22Na 511.00, 1274.53
10) 24Na 1368.63, 2754.03
12) 40K 1460.83
14) 46Sc 889.28, 1120.55
11) 51Cr 320.08
13) 54Mn 834.85
6) 56Co 846.77, 977.37, 1037.84, 1175.10, 1238.28, 1360.22, 1771.35, 20

2034.76, 2598.46
7) 56Co 122.06, 136.47
8) 15Co 810.78
1) 60Co 1173.24, 1332.50
15) 88Y 898.04, 1836.06
17) 109Cd 88.04
19) 111ln 171.28, 245.40
16) 133Ba 53.16, 79.61, 81.00, 276.40, 302.85, 356.02, 383.85
2) 137Ca 661.66
18) 139Ce 165.86
4) 152Eu 121.78, 244.70, 344.27, 411.12, 443.97, 778.90, 867.38, 964.08,

1085.87, 1089.74, 1112.07, 1212.95, 1299.14, 1408.01
9) 154Eu 123.07, 247.93, 591.76, 692.42, 723.30, 756.76, 873.19, 996.26,

1004.73, 1274.44, 1596.50
20) 192Ir 205.80, 295.96, 308.46, 316.51, 468.07, 484.58, 588.58, 604.41,
21) Bi 569.70, 1063.66, 1770.24
5) 241Am 59.50
22) 238U series

234mPa 1001.03
214Pb 53.23, 242.00, 295.22, 351.93, 785.96
214Bi 609.31, 665.45, 768.36, 806.17, 934.06, 1120.29, 1155.19, 1238

1280.96, 1377.67, 1401.50, 1407.98, 1509.23, 1661.28, 1729.60
1764.49, 1847.42, 2118.55, 2204.21, 2447.86

23) 232Th series
228Ac 99.51, 129.07, 209.25, 270.25, 328.00, 338.32, 409.46, 463.00, 7

772.29, 794.95, 835.71, 911.20, 964.77, 968.97, 1588.19, 1630.6
212Bi 727.33, 785.37, 1620.50
208Tl 277.35, 510.77, 583.19, 763.13, 860.56, 2614.53

24) 227Ac series
235U 109.16, 143.76, 163.36, 185.71, 202.11, 205.31
223Ra 122.32, 144.23, 154.21, 269.46, 323.87, 338.28, 445.03
227Th 50.13, 79.72, 93.93, 210.65, 235.97, 256.25, 286.12, 300.00, 304

329.85, 334.38
simulations) spectrum. The motivation for selecting the objectives
MAE and RMSE is to exploit their properties in order to find a
‘‘good” solution in terms of two measures of goodness of fit. The
RMSE minimizes bias in the solution, while the MAE measures
how close estimated spectra are to the measured (or simulated)
ones (Alamaniotis et al., 2013).

The output of the algorithm is also a list of detected radioiso-
topes with their estimated fractional abundances. In the algorithm,
the surplus set S holds the indices of those relative abundances
that have zero values (xj = 0), while the passive set P comprises
all indices of m relative abundances that have positive values. Fur-
thermore, all the indices of m relative abundances are included in
the active set A in initialization step of the algorithm, i.e., all the
pertinent library spectra are candidate for reconstructing the
detector output spectrum. In addition, RP denotes the matrix con-
taining only the library spectra currently used in the passive set P,
while the intermediate regression vector zP contains their opti-
mum fitting parameters estimated using PSO method along with
SOA and Theil tests. At the end of algorithm the indices of identi-
fied radioisotopes are in the passive set, while the rejected ones
are in the surplus set. The problem is solved if the set A is empty,
i.e., all the identified isotopes with a positive quantity as well as
rejected ones are determined or if the improvement in Theil coef-
ficient is smaller than the small value d, (stage 1 of algorithm 2). It
has to be noted that there is no specific threshold for determining
the small value d and it depends on the experience of the modeler
e of isotopes are used in the results section.

Intensity (%)

180.00, 99.94
100.00, 99.94
11.00
99.98, 99.99
10.00
99.98

15.18, 100.00, 1.44, 13.99, 2.28, 67.60, 4.33, 15.69, 3.08, 7.88, 17.28

85.60, 10.68
99.00
99.97, 99.99
93.70, 99.20
3.61
90.00, 94.00
2.199, 2.62, 34.06, 7.16, 18.33, 62.05, 8.94
85.10
80.00
28.58, 7.58, 26.50, 2.23, 2.82, 12.94, 4.25, 14.61, 10.21, 1.73,
13.64, 1.42, 1.62, 21.01
40.79, 6.95, 4.99, 1.80, 20.22, 4.57, 12.27, 10.60, 18.01, 35.19,
1.80

612.47 3.30, 28.67, 30.00, 82.81, 47.83, 3.18, 4.52, 8.23, 5.31
97.74, 74.5, 6.87
35.90

0.84
1.20, 7.43, 19.30, 37.60, 1.07

.11,
,

46.1, 1.46, 4.94, 1.22, 3.03, 15.10, 1.63, 5.79, 1.43, 4.00, 1.27,
2.15, 2.11, 1.15, 2.92, 15.40, 2.11, 1.14, 5.08, 1.57

55.32,
3

1.26, 2.42, 3.89, 3.46, 2.95, 11.27, 1.92, 4.40, 1.00, 1.49, 4.25,
1.61, 25.80, 4.99, 15.80, 3.22, 1.51
6.58, 1.10, 1.49
6.31, 22.60, 84.50, 1.81, 12.42, 99.00

1.54, 10.96, 5.08, 57.2, 1.08, 5.02
1.19, 3.22, 5.62, 13.70, 3.93, 2.79, 1.27

.52, 8.00, 1.89, 1.37, 1.11, 12.3, 7.00, 1.54, 2.32, 1.2, 2.7, 1.05



Fig. 2. Simulated responses of a NaI(Tl) detector to 238U series, 40K and 137Cs
gamma-ray sources using MCNPX Monte Carlo code. Note that the values presented
on vertical axis are normalized to the number of particle source histories.
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(Alamaniotis and Jevremovic, 2015). In this work a small value of
1% (d = 0.01) is considered for predetermined improvement in Theil
coefficient.

As presented in Fig. 1, the different parts of the algorithm 2 can
be described using the parameter k as following steps:

Algorithm 2: SGSD

Input: R 2 Rn�m; N 2 Rn; B 2 Rn; d
Output: x̂ > 0 such that x̂ ¼ argminFunc
Initialization: P = £, A ¼ 1;2; . . . ;mf g; S = £,

k ¼ 1; j ¼ 1; Theil1 ¼ 106; Theil2 ¼ 1
Repeat
1. Proceed if A – £ ^ ðTheilk � Theilkþ1Þ=Theilk P dð Þ
1.1. For j 2 A
1.1.1. Include the index j in P and remove it from A
1.1.2. zP ¼ argminFunc
1.1.3. Apply SOA test
1.1.4. Proceed if minðzPÞ ¼¼ 0
1.1.4.1. Update P and S
1.1.4.2. zP ¼ argminFunc
1.1.4.3. zA ¼ 0
1.1.4.4. zS ¼ 0

1.1.5. x̂ ¼ zP

1.1.6. Compute Theilkþ2

1.1.7. Proceed if Theilkþ2 < Theilkþ1

1.1.7.2. Theilkþ1 ¼ Theilkþ2

1.1.7.2. J ¼ j
1.1.8. Remove the index j from P and include it in A

1.2. Include the index J in P and remove it from A
1.3. Proceed if ðTheilkþ1 � Theilkþ2Þ=Theilkþ1 < d
1.3.1. Update P and S
1.3.2. zP ¼ argminFunc
1.3.3. x̂ ¼ zP

1.4. k ¼ kþ 1
2. Comment: The computation is completed

Step I (k = 1): The output spectrum is considered as a function of
library spectrum j, j 2 A (stages 1.1 and 1.1.1). In other words, the
passive set has only 1 index related to the jth library spectrum (P
= {j}) in the algorithm. It is called the input-output model 1-j. So,
we have m models: 1–1, 1–2, . . ., 1-m. All models can be run in par-
allel, since they are independent.

Step II: The optimum fitting vector z is found using PSO method
for each model (stage 1.1.2). When a new isotope is included in the
passive set P, there is a chance that in the unconstrained solution to
the new optimization problem the regression coefficient of added
isotope will turn zero after applying SOA test (stages 1.1.3 and
1.1.4). The quantity of the added isotope will become zero and
hence it is removed from the set P and included in the Set S (stage
1.1.4.1). The new estimate of the intermediate coefficient z is then
calculated (1.1.4.2) and the regression coefficients of isotopes
removed from the set P and those of present in set A are set to zero
(stages 1.1.4.3 and 1.1.4.4). The optimum model with the least
Theil coefficient is then adopted out of the m models (stages
1.1.5–1.1.8). The index of the identified isotope is removed from
the active set and included in the passive set (stage 1.2). If the
improvement in Theil coefficient is smaller than the small value
d, the added isotope is removed from the set P and included in
the Set S and the intermediate coefficient z is then calculated using
the updated P and the regression vector x̂ is set equal to zP (stages
1.3.1 and 1.3.3). It should be noted that the identified isotope in
this step (P = J1 in Fig. 1) has the most similar spectrum to the
spectrum of the unknown source.
Step III (k = k + 1): Starting from an optimal model at step I, say
model 1-J1, where only the library spectrum RJ1 (P = {J1}) appears
in the algorithm, take all the combinations R{J1,j} ðj 2 AÞ. Thus, we
get m-1 models each of which is named model 2-j. Then finding
again an optimum model with the least Theil coefficient just as
in step II (P = {J1, J2} in Fig. 1). Similar to the step I, the models
can be run in parallel.

Step IV: Repeat step III in a similar way by transferring another
index from active set to the passive set. For example, the algorithm
starts with the optimal model 2-J2 as presented in Fig. 1 where
only the library spectra R{J1,J2} (P = {J1,J2}) appears in the algorithm.
Then, all the combinations R{J1,J2,j} ðj 2 AÞ are taken to getm-2 mod-
els each of which is named model 3-j. Then finding again an opti-
mummodel with the least Theil coefficient just as in step II (P = {J1,
J2, J3} in Fig. 1).

Step V: The algorithm is stopped when the set A is empty or
when the improvement in the Theil coefficient is smaller than d.

It has to be noted that the presented steps of the algorithm are
inspired from Ref. (Takagi and Sugeno, 1985) where the identifica-
tion and modeling of a complex nonlinear system is performed
using a Sugeno fuzzy system. Nevertheless, it is assumed that
one deals with a linear system of equations in WSA of gamma-
ray spectra after treating its nonlinearities and the simple algo-
rithm presented here can appropriately identify and model the sys-
tem. The main difference between current work and the method
used a fuzzy identification (Alamaniotis and Jevremovic, 2015) is
that their fuzzy identification procedure is done based on only
photopeaks present in library spectra, while the whole procedure
of our algorithm is performed by whole information of the library
spectra. Although they have attempted to determine the elements
that have not been identified or misidentified in the next steps of
their algorithm and modify the identification stage, the identifica-
tion method presented here can accurately identify the radioiso-
topes and determine their corresponding fractional abundances.

4. Validation of the proposed algorithm

The implemented SGSD algorithm is applied to analyze both the
simulated and experimentally measured gamma-ray spectra
obtained using a high efficiency 3 � 3 inch NaI(Tl) detector. Two
example cases including an experimental study and a simulation
one are presented for detailed description and comparison of the
SGSD and NNLS algorithms in analyzing gamma-ray spectra. Fur-
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thermore, 8 case studies are presented to compare the imple-
mented algorithm against the NNLS algorithm.

In the case of empirical study, the 60Co, 137Cs, 22Na, 152Eu and
541Am point sources with the specifications presented in Table 1
are used to obtain the response matrix (R) as well as detector
response to different combinations of sources (N) and background
(B). Measurement system includes standard NIM units such as
MCA, Spectroscopy Amplifier and related software for data acquisi-
tion. The point sources are located in front surface of detector and
along its axis. The detector response matrix is measured in 1024
channels of MCA and in 3600 seconds spectrum acquisition with
respect to the count rates of isotopes in the background-
subtracted full spectrum of the detector (Net count rate) as pre-
sented in Table 1. The background count rate in the full spectrum
is also included in Table 1. In addition, the energy calibration of the
detection system is performed using the 241Am (59.5 keV), 152Eu
(121.78, 244.70, 344.27, 778.90, 964.08 keV), 22Na (511.00,
1274.53 keV), 137Cs (661.66 keV) and 60Co (1173.24, 1332.50 keV)
sources, resulting in 2.5716 keV per channel. It should be noted
that the recorded counts in energies below 50 keV are not consid-
ered to analyze the gamma-ray spectra in all algorithms.

In simulation studies, the required detector spectra and
response matrix are simulated using MCNPX (Pelowitz, 2008)
Monte Carlo code. A 3 � 3 inch NaI(Tl) detector is modeled by
MCNPX computer code to obtain the response matrix and detector
spectra related to isotropic point sources located in 5 cm far from
the front surface of the detector. It should be noted that only the
photon transport mode is used in simulations. The simulated
sources are listed in Table 2. As it is shown in Table 2, each of
238U, 232Th and 227Ac series comprise 3 isotopes. Thus, 24 library
spectra in the range of 50–3000 keV are simulated using MCNP
F8 tally to make the response matrix. A label is assigned to each
isotope (library spectrum) placed on the left side of it in Table 2.
These labels are used in the results section. To simulate the
observed energy broadening in a physical radiation detector, the
GEB option is used in the simulations. Using the GEB option in
MCNPX code, the tallied energy is broadened by sampling from
the Gaussian distribution presented in Eq. (10) (Pelowitz, 2008).

f ðEÞ ¼ Cexp �E� E0

A


 �2

ð10Þ

where, E is the broadened energy, E0 is the unbroadened energy of
the tally, C is a normalization constant and A is the Gaussian width.
Table 3
Obtained results of spectrum analysis using SGSD and NNLS algorithms for a 10 s long me

Model k-j Analysis results

SGSD algorithm

I.R. R.A. S.D. Theil

Model 1-j 152Eu 1.00000 0.02875 0.33979

Model 2-j 152Eu 0.93500 0.01518 0.15406
137Cs 0.46877 0.00957

Model 3-j 152Eu 0.84419 0.01339 0.13561
137Cs 0.43668 0.00844
22Na 0.15461 0.00898

Model 4-j 152Eu 0.84151 0.01333 0.13496
137Cs 0.43572 0.00841
22Na 0.15477 0.00895
241Am 0.07248 0.02091

Model 5-j – – – –
– – – –
– – – –
– – – –
– – – –
The Gaussian width is related to the Full Width Half Maximum
(FWHM) by Eq. (11).

A ¼ FWHM

2
ffiffiffiffiffiffiffiffi
ln2

p ð11Þ

The desired FWHM is specified using Eq. (12) by the user–pro-
vided constants, a, b, and c.

FWHM ¼ aþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ cE2

q
ð12Þ

The used constants in simulations are (Hakimabad et al., 2007):
a = �0.00789 MeV; b = 0.06769 MeV1/2; c = 0.21159 MeV�1.

It should be noted that the number of particle source histories
(NPS) (Pelowitz, 2008) is considered large enough for making the
response matrix so that the relative statistical error in each energy
bin is less than 5%. The simulated responses of the NaI(Tl) detector
to the 238U series, 40K and 137Cs sources obtained using MCNPX
Monte Carlo code are illustrated in Fig. 2. Since the output of the
MCNPX code is normalized to NPS, the values presented on the ver-
tical axis of Fig. 2 are internally normalized to the number of par-
ticle source histories.

The implemented SGSD algorithm is executed on a common PC
with Intel Core i7 2.6 GHz processor. To reach the stopping condi-
tion criteria an average of about 20 seconds of computer time is
required for different scenarios of this work. However, the run time
can be significantly reduced by running the different models of
algorithm in parallel as mentioned in Step I of algorithm. The
developed algorithm is applied to analyze both the simulated
and experimentally measured gamma-ray spectra using the
obtained response matrices and compared against NNLS algorithm
in the next section.
5. Results

In the first example case, both SGSD and NNLS algorithms are
applied for WSA of a 10 s long measured gamma-ray spectrum
related to mixed 137Cs, 22Na and 152Eu sources. The obtained
results are presented in Table 3. The results include the identified
radioisotopes (I.R.), their respective estimated relative abundances
(R.A.) and standard deviations (S.D.) as well as calculated Theil
coefficient between the estimated detector spectra and the mea-
sured ones. It should be noted that the standard deviations and
Theil coefficient are calculated using Eqs. (7) and (8) respectively,
asured spectrum of a mixed source containing 137Cs, 22Na and 152Eu radioisotopes.

NNLS algorithm

I.R. R.A. S.D. Theil

70 60Co 0.28436 0.01488 0.4931587

50 60Co 0.15211 0.01096 0.3223810
137Cs 0.57122 0.01859

94 60Co 0.02962 0.00556 0.1515858
137Cs 0.45274 0.00944
152Eu 0.89730 0.01497

35 60Co 0.00422 0.00497 0.1347299
137Cs 0.43294 0.00843
152Eu 0.85572 0.01338
22Na 0.15604 0.00897
60Co 0.00388 0.00495 0.1341117
137Cs 0.43248 0.00840
152Eu 0.85379 0.01332
22Na 0.15557 0.00894
241Am 0.06245 0.02089



Table 4
Active (A), passive (P) and surplus (S) sets related to Table 3.

Model k-j Sets

SGSD algorithm NNLS algorithm

A P S A P

Model 1- j {1,2,3,5} {4} {} {2,3,4,5} {1}

Model 2- j {1,3,5} {4,2} {} {3,4,5} {1,2}

Model 3- j {5} {4,2,3} {1} {3,5} {1,2,4}

Model 4- j – {4,2,3} {1,5} {5} {1,2,4,3}

Model 5- j – – – – {1,2,4,3,5}

Fig. 3. The sequence of reconstructed spectra obtained using NNLS and SGSD algorithms and the measured spectrum for a 10 s long measured spectrum of a mixed gamma-
ray source containing 137Cs, 22Na and 152Eu radioisotopes.
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while relative abundances are calculated by dividing the amount of
each isotope by the total amount of all isotopes in the sample.

The models k-j shown in the left column of the Table 3 are sim-
ilar to those described in Section 3.2 (see Fig. 1). As it can be
observed in Table 3, the results of NNLS algorithm are also repre-
sented according to these models to perform a better comparison
between the identification procedures of SGSD and NNLS algo-
rithms. The Active (A), passive (P) and surplus (S) sets of SGSD algo-
rithm as well as the Active (A) and passive (P) sets of NNLS
algorithm related to Table 3 are presented in Table 4. It should



Fig. 4. The estimated spectra obtained using NNLS (Model 11-j of Table 5) and SGSD
(Model 1-j of Table 5) algorithms and the simulated spectrum for a 232Th series
gamma-ray source.
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be noted that the indices included in sets are similar to those of
Table 2. A detailed description of these sets is performed later in
this section.

The measured detector spectra are also reconstructed using the
obtained relative abundances to find out how well the SGSD and
NNLS algorithm can reproduce the input gamma-ray spectra in
each model of Table 3. The estimated spectrum of developed SGSD
algorithm in comparison with NNLS are calculated using the
response matrix in models 1-j to 3-j where the identification pro-
cedure of SGSD algorithm is completed. The sequence of obtained
reconstructed spectra is illustrated in Fig. 3.

Since there are 5 library spectra in our experimental studies,
both algorithms start with five models in model 1-j where j is
the index of library spectra shown in Table 1. The optimal relative
Table 5
Obtained results of spectrum analysis using SGSD and NNLS algorithms for a simulated sp

Model k-j Analysis results

SGSD algorithm

I.R. R.A. S.D. Theil

Model 1-j 232Th 0.79096 0.01344 0.21155

Model 2-j 232Th 0.78222 0.01340 0.21092
152Eu 0.08309 0.02963

Model 3-j – – – –
– – –
– – –

Model 4-j – – – –
– – –
– – –
– – –

. . . . .

. . . . .

. . . . .

Model 11-j – – – –
– – –
– – –
– – –
– – –
– – –
– – –
– – –
– – –
– – –
– – –
abundances and corresponding standard deviations are calculated
in each model and the fittest model is selected. The fittest models
are model 1–4 (152Eu isotope) and model 1–1 (60Co isotope) for
SGSD and NNLS algorithms respectively as shown for Model 1-j
in Table 3. The indices 4 and 1 are therefore removed from the
active sets and included in the passive sets related to both algo-
rithms as presented for Model 1-j in Table 4. The reconstructed
spectra using the obtained relative abundances are illustrated in
Fig. 3(a). As can be seen in Fig. 3(a), the estimated spectrum using
SGSD algorithm is more similar to the measured spectrum than
that of NNLS algorithm. The calculated Theil coefficients, as a mea-
sure of goodness of fit, presented in Table 3 also confirm this. There
are only 4 models in model 2-j, since an isotope of unknown source
has been identified in model 1-j. Again, the optimal relative abun-
dances of isotopes and corresponding standard deviations are cal-
culated in each model and the fittest model is chosen. The fittest
models are model 2–2 (152Eu-137Cs isotopes) for SGSD algorithm
and model 2–2 (60Co-137Cs isotopes) for NNLS as presented for
Model 2-j in Table 3. Thus, the index 2 is transferred from the
active sets to the passive sets as presented forModel 2-j in Table 4.
The more similar estimated spectrum of SGSD to the measured
spectrum is evident in Fig. 3(b). Improvement in Theil coefficient
is about 55% for SGSD algorithm which is more than the stopping
condition d = 1% and therefore the algorithm continues. The identi-
fied isotopes in model 3-j are 22Na and 152Eu for SGSD and NNLS
algorithms respectively as presented in Tables 3 and 4. Since the
calculated abundance fraction of 60Co isotope using SGSD algo-
rithm is zero in this step, the isotope is rejected from identification
procedure of SGSD and the corresponding index is transferred from
active set to surplus set as presented for Model 3-j in Table 4. As
shown in Fig. 3(c), a good estimate of the measured spectrum is
calculated using SGSD and the improvement in Theil coefficient
is about 12%. The only remaining member of active set related to
SGSD algorithm is 241Am, while the isotopes 22Na and 241Am are
in the active set of NNLS. The improvement in Theil coefficient in
model 4-j related to SGSD is about 0.5% that is smaller than the
stopping condition. The 241Am isotope is therefore removed from
ectrum of a source containing only 232Th series.

NNLS algorithm

I.R. R.A. S.D. Theil

15 232Th 0.80790 0.01343 0.2091902

58 232Th 0.78865 0.01339 0.2084315
46Sc 0.03386 0.01246
232Th 0.78155 0.01334 0.2074721
46Sc 0.03401 0.01241
57Co 0.08759 0.01334
232Th 0.77645 0.01334 0.2073891
46Sc 0.03349 0.01242
57Co 0.08779 0.02950
22Na 0.01721 0.01839
. . . .
. . . .
. . . .
232Th 0.73939 0.01337 0.2070508
46Sc 0.01439 0.01244
57Co 0.09336 0.02956
22Na 0.02417 0.01843
238U 0.02119 0.01476
88Y 0.02582 0.01443
207Bi 0.02983 0.01686
241Am 0.02480 0.03996
58Co 0.00291 0.01595
60Co 0.00087 0.01068
24Na 0.00036 0.01465



Table 6
Active (A), passive (P) and surplus (S) sets related to Table 5. The indices included in sets are similar to those of Table 2.

Model k-j Sets

SGSD algorithm NNLS algorithm

A P S A P

Model 1-j {1,2,. . .,22,24} {23} {} {1,2,. . .,22,24} {23}

Model 2-j {2,5,8,9,14,22,24} {23} {1,3,4,6,7,10,11,12,13,15,. . .,21} {1,2,. . .,13,15, . . ., 22,24} {23,14}

Model 3-j – – – {1,2,. . .,6,8,. . .,13,15,. . ., 22,24} {23,14,7}

Model 4-j – – – {1,2,4,5,6,8,. . ., 13,15,. . ., 22,24} {23,14,7,3}
. . . . . .
. . . . . .
. . . . . .

Model 11-j – – – {2,4,6,9,11,12,13,16,. . .,20,24} {23,14,7,3,22,15,21,5,8,1,10}

Table 7
Obtained results of spectrum analysis using SGSD and NNLS algorithms for experimentally measured case studies 1–5. The labels included in columns 2 and 5 are similar to those
of Table 2.

Case study #
a) Isotope-Fractional abundance
b) Spectrum acquisition time
c) Total counts

Analysis results

SGSD algorithm NNLS algorithm

F.A.
(%)

S.D.
(%)

Error
(%)

F.A.
(%)

S.D.
(%)

Error
(%)

Case study 1
a) 60Co �100%
b) 1 s
c) 524

1) 72.55
4) 27.45

1.94
13.78

27.45
–

1) 67.81
2) 3.67
3) 3.81
4) 24.71

2.06
64.53
66.21
15.20

32.19
–
–
–

Case study 2
a) 60Co �100%
b) 2 s
c) 1008

1) 93.60
3) 6.40

1.68
66

6.40
–

1) 91.81
3) 1.81
4) 6.38

1.70
156
65.91

8.19
–
–

Case study 3
a) 60Co �48%

137Cs-52%
b) 5 s
c) 3484

1) 48.44
2) 51.56

1.95
3.11

0.91
0.84

1) 47.82
2) 51.44
3) 0.55
4) 0.03
5) 0.16

1.97
3.11
312
8789
2474

0.38
1.07
–
–
–

Case study 4
a) 137Cs �55.45%

22Na �6.61%
152Eu-37.94%

b) 5 s
c) 3378

2) 56.63
3) 8.38
4) 34.99

2.00
14.37
5.13

2.13
26.85
7.78

1) 1.43
2) 55.37
3) 8.60
4) 34.60

46.39
2.04
13.97
5.18

–
0.15
30.23
8.82

Case study 5
a) 137Cs �55.45%

22Na �6.61%
152Eu-37.94%

b) 60 s
c) 6576

2) 56.00
3) 6.50
4) 37.50

0.62
5.66
1.46

0.99
1.65
1.16

2) 55.58
3) 6.40
4) 37.83
5) 0.19

0.62
5.74
1.45
460

0.24
3.16
0.29
–
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the passive set and included in surplus set and the SGSD algorithm
is terminated. Thus, the final results of the SGSD algorithm are
those presented in Model 3-j of Table 3. However, the NNLS algo-
rithm continues to model 5-j.

The SGSD algorithm is also applied to analyze a simulated
gamma-ray spectrum related to a 232Th series source obtained
using MCNPX Monte Carlo code and compared against NNLS algo-
rithm in the second example case. The NPS is set 20,000 to have
relatively large errors in Monte Carlo calculations, thereby intro-
ducing a complex gamma-ray spectrum to analyze using the NNLS
and SGSD algorithms (Fig. 4). The obtained results of WSA of sim-
ulated gamma-ray spectrum related to the 232Th series including
identified radioisotopes (I.R.) and their respective estimated rela-
tive abundances (R.A.) and standard deviations (S.D.) as well as cal-
culated Theil coefficient between the estimated detector spectra
and simulated ones are presented in Table 5. Furthermore, the
Active (A), passive (P) and surplus (S) sets of SGSD algorithm as
well as the Active (A) and passive (P) sets of NNLS algorithm
related to Table 5 are presented in Table 6. It should be also noted
that the indices included in sets are similar to those of Table 2. The
estimated spectrum of 232Th series gamma-ray source using the
developed SGSD algorithm in comparison with NNLS algorithm
are calculated using the response matrix and presented in Fig. 4.

In this example case, both algorithms start with 24 models in
model 1-j where j is the index of library spectra shown in Table 2.
The optimal relative abundances and corresponding standard devi-
ations are calculated in each model and the fittest model is
selected. The fittest model is model 1–23 (232Th series) for both
SGSD and NNLS algorithms as presented for Model 1-j in Table 5.
As shown for Model 1-j in Table 6, the index 23 is therefore
removed from the active sets and included in the passive sets
related to both algorithms. Since an isotope of unknown source
is identified in model 1-j, there are only 23 models in model 2-j.
Again, the optimal relative abundances of isotopes and correspond-
ing standard deviations are calculated in each model and the fittest
model is chosen. The fittest models are model 2–4 (232Th-152Eu) for
SGSD algorithm and model 2–14 (232Th-46Sc) for NNLS as pre-
sented for Model 2-j in Table 5. In one hand, the improvement in



Table 8
Obtained results of spectrum analysis using SGSD and NNLS algorithms for Monte Carlo simulated case studies 6–8. The labels included in columns 2 and 5 are similar to those of
Table 2.

Case study #
a) Isotope-Fractional abundance
d) NPS

Analysis results

SGSD algorithm NNLS algorithm

F.A.
(%)

S.D.
(%)

Error
(%)

F.A.
(%)

S.D.
(%)

Error
(%)

Case study 6
a) 40K-95%

238U-4%
232Tu-1%

d) 5 � 107

12) 94.98
22) 3.96
23) 1.06

0.05
1.36
4.62

0.02
0.98
5.62

2) 0.01
3) 0.04
12) 94.94
15) 0.04
17) 2e-3
21) 0.05
22) 3.98
23) 0.94

479
183
0.05
123
7014
136
1.35
5.15

–
–
0.07
–
–
–
0.44
5.76

Case study 7
a) 40K �95%

238U �4%
232Tu �1%

d) 5 � 108

12) 94.89
22) 4.08
23) 1.03

0.04
1.08
3.87

0.12
1.93
3.48

2) 0.02
3) 0.03
9) 0.01
12) 94.91
15) 0.08
17) 1e-3
19) 1e-3
21) 5e-3
22) 4.00
23) 0.94

314
154
692
0.04
51.82
7666
6268
105
1.06
4.12

–
–
–
0.10
–
–
–
–
0.11
6.38

Case study 8
a) 56Co-10%

58Co-15%
54Mn-14%
46Sc-40%
133Ba-20%
109Cd-1%

d) 4 � 107

6) 9.83
8) 14.87
13) 14.03
14) 39.53
16) 21.07
17) 0.68

0.64
0.48
0.50
0.14
0.62
21.91

1.75
0.88
0.24
1.18
5.34
32.14

6) 9.18
8) 14.81
13) 14.43
14) 39.65
16) 21.27
17) 0.66

0.68
0.47
0.48
0.14
0.61
22.24

8.21
1.25
3.05
0.87
6.32
33.57

Fig. 5. The estimated spectra obtained using NNLS and SGSD algorithms and the
simulated spectrum for a mixed source containing 56Co, 58Co, 34Mn, 46Sc, 133Ba and
109Cd sources.
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Theil coefficient in model 2-j related to SGSD is about 0.3% which is
smaller than the stopping condition. The 152Eu isotope is thus
transferred from the passive set to the surplus set and the SGSD
algorithm is terminated. The final results of the SGSD algorithm
are those presented in Model 1-j of Table 5. On the other hand,
the NNLS algorithm continues to model 11-j. It should be noted
that in addition to the 152Eu isotope, 15 isotopes are rejected and
included in surplus set in model 2-j of SGSD algorithm as presented
for Model 2-j in Table 6 since their corresponding relative abun-
dances are zero.

Furthermore, five different empirical case studies are consid-
ered to test the implemented SGSD algorithm in comparison with
NNLS algorithm as shown in Table 7. These case studies include
two measurements of gamma-ray spectra comprised of single
60Co source and 3 measurements consist of different combinations
of 60Co, 137Cs, 22Na and 152Eu sources. The fractional abundances of
isotopes (F.A. in percent) and their respective fractional standard
deviations (S.D. in percent) as well as the errors of obtained abun-
dance fractions with respect to their real fractions (Error in per-
cent) are also calculated and presented in Table 7.

In addition, three different simulated case studies are consid-
ered to test the implemented SGSD algorithm in comparison with
NNLS algorithm as shown in Table 8. These case studies include
two simulations of gamma-ray spectra comprised of mixed 40K,
238U and 232Th series sources and a simulation consist of mixed
56Co, 58Co, 54Mn, 46Sc, 133Ba and 109Cd sources. The fractional abun-
dances of isotopes (F.A. in percent) and their respective fractional
standard deviations (S.D. in percent) as well as the errors of
obtained abundance fractions with respect to their real fractions
(Error in percent) are also calculated and presented in Table 7.

The estimated spectra related to the case study 8 of Table 8 for
both SGSD and NNLS algorithms are also calculated and presented
in Fig. 5.
6. Discussion and conclusion

As can be seen in Table 3 and Fig. 3, there is a fundamental dif-
ference between the identification procedure of the SGSD and
NNLS algorithms. In fact, the SGSD algorithm provides a better esti-
mation of the abundance fractions in comparison with NNLS at
every step that the algorithms are stopped. Furthermore, the SGSD
reject a large number of library spectra in initial steps because they
are not involved in the creation of the spectrum of an unknown
gamma-ray source based on the information of whole spectrum
as discussed in example case 2 and presented in Table 6. Although
the final estimated spectrum of NNLS algorithm is more similar to
the measured one in the second example case and the Theil value
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of the final solution related to the NNLS algorithm (Model 11-j in
Table 5) is also slightly smaller than that of the SGSD, a ‘‘good”
solution can be obtained using SGSD algorithm. In other words,
as it is described in optimization problem (9), the SGSD algorithm
tries to minimize both MAE and RMSE in order to find a ‘‘good”
solution in terms of two measures of goodness of fit. As can be seen
in Tables 7 and 8, the identification procedure of the SGSD algo-
rithm is much more efficient than the NNLS algorithm. The SGSD
algorithm can identify the correct isotopes of unknown sources
in Tables 7 and 8 except for case studies 1 and 2 of Table 7 in which
another isotope is identified in addition to 60Co isotope. The reason
for this discrepancy is the large statistical errors in recorded counts
due to the small acquisition time. However, higher spectrum
acquisition time leads to more accurate results as presented in case
studies 1, 2, 4 and 5 of Table 7. The same inference can be obtained
by comparing the obtained results of case studies 6 and 7 of Table 8.
Although the results of the NNLS algorithm can be improved using
SOA test, the correct isotopes of an unknown source cannot be
identified using this method. For example, the 46Sc and 57Co iso-
topes are identified in addition to 232Th series in Model 3-j of
Table 5. The standard deviations related to these isotopes are smal-
ler than their relative abundances. Therefore, the SOA test cannot
remove the misidentified 46Sc and 57Co isotopes. The better results
of SGSD algorithm over NNLS for calculation of fractional abun-
dances are evident in case study 8 of Table 8. Both algorithms have
identified the correct isotopes of unknown source but the SGSD
algorithm calculates the fractional abundances more accurate than
the NNLS algorithm. However, as shown in Fig. 5, the outputs from
both algorithms reproduce the entire spectra accurately.

A novel approach for analysis of complex gamma-ray spectra
using a sequential algorithm was presented in this article. The
implemented SGSD (Sequential Gamma-ray Spectrum Deconvolu-
tion) algorithm exploits the advantages of the active set method
and an evolutionary optimization technique to analyze the com-
plex gamma-ray spectra. The idea of active set method is used
for identification purposes, while the particle swarm optimization
is applied for fitting process as presented in (Shahabinejad and
Vosoughi, 2018) in the new algorithm. The results of the present
algorithm were compared with the results obtained from NNLS
(Non-Negative Least Square) algorithm. According to the obtained
results, the SGSD algorithm produces more accurate results than
NNLS algorithm for both identifying and determining the fractional
abundances of isotopes in gamma-ray spectrum analysis.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.anucene.2019.04.057.
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